Experience a connected care management platform built with powerful, intuitive digital health tools that enhance every aspect of neuromodulation therapy management for patients.
Experience a connected care management platform built with powerful, intuitive digital health tools that enhance every aspect of neuromodulation therapy management for patients.
Secure remote programming that allows you to optimize therapy management virtually.
Direct access to therapy from a personal mobile device.
Abbott's NeuroSphere™ Digital Care is a first-of-its-kinda connectedcare management platform that joins proven neuromodulation therapies with powerful digital health tools.
NeuroSphere™ Virtual Clinic is the first remote neuromodulation programming technology that includes in-app video chat services.1 This award-winning platform2 allows physicians to prescribe and initiate new neurostimulation settings, as well as to optimize therapy directly from Abbott's Clinician Programmer.
Ask an Abbott representative to learn more about NeuroSphere™ Digital Care.
The NeuroSphere™ Virtual Clinic in-app chat streamlines patient follow-up visits. Using the app, physicians can talk with patients about symptoms and outcomes, make real-time therapy adjustments, and immediately assess efficacy—all without requiring in-person appointments.
Use the Abbott Clinician Programmer to create a more accessible remote care connection that lets you:
Because the Patient Controller app can also be downloaded to their personal smartphone,* patients can modulate therapy as needed within their prescribed settings.
NeuroSphere™ Virtual Clinic can be upgraded to accommodate innovations and support future care. The platform also offers:
Click below to see more about Abbott's neurostimulation product portfolio for chronic pain.
* Available on eligible Apple‡ mobile devices. See a list of personal Apple‡ mobile devices compatible with Abbott’s Patient Controller app.
‡ Indicates a third party trademark, which is property of its respective owner.
Read this section to gather important prescription and safety information. For specific indications, contraindications, instructions, warnings, precautions, and adverse effects about system components available in your country or region, see the approved clinician's manual for those components.
This neurostimulation system is designed to deliver low-intensity electrical impulses to nerve structures. The system is intended to be used with leads and associated extensions that are compatible with the system.
United States:
The neurostimulation system is indicated for the following conditions:
International:
The neurostimulation system is indicated for the following conditions:
United States:
This system is contraindicated for patients who meet the following criteria:
The following procedures are contraindicated for patients with a deep brain stimulation system. Advise patients to inform their healthcare professional that they cannot undergo the following procedures:
International:
Implantation of this neurostimulation system is contraindicated for the following:
The following procedures are contraindicated for patients that have been implanted with this device:
Diathermy therapy. Do not use short-wave diathermy, microwave diathermy, or therapeutic ultrasound diathermy (all now referred to as diathermy) on patients implanted with a neurostimulation system. Energy from diathermy can be transferred through the implanted system and can cause tissue damage at the location of the implanted electrodes, resulting in a severe injury or death.
Diathermy is further prohibited because it may also damage the neurostimulation system components. This damage could result in loss of therapy, requiring additional surgery for system replacement. Injury or damage can occur during diathermy treatment whether the neurostimulation system is turned on or off. All patients are advised to inform their healthcare professional that they should not be exposed to diathermy treatment.
Some models of this system are Magnetic Resonance (MR) Conditional, and patients with these devices may be scanned safely with magnetic resonance imaging (MRI) when the conditions for safe scanning are met. Scanning under different conditions may cause device malfunction, severe patient injury, or death. For more information about MR Conditional deep brain stimulation (DBS) components and systems, including equipment settings, scanning procedures, and a complete listing of conditionally approved components, refer to the MRI procedures clinician's manual for DBS systems (available online at manuals.sjm.com).
The following warnings apply to this neurostimulation system.
Pregnancy and nursing. Safety and effectiveness of neurostimulation for use during pregnancy and nursing have not been established. Patients should not use this neurostimulation system if they are pregnant or nursing.
Magnetic resonance imaging (MRI). Some patients may be implanted with the components that make up a Magnetic Resonance (MR) Conditional system, which allows them to receive an MRI scan if all the requirements for the implanted components and for scanning are met. A physician can help determine if a patient is eligible to receive an MRI scan by following the requirements provided by Abbott Medical. Physicians should also discuss any risks of MRI with patients.
If any component of the implanted neurostimulation system, such as an IPG, lead, or extension, does not meet the requirements for an MR Conditional system, do not perform an MRI scan. If a system does not meet the MR Conditional requirements, consider it MR Unsafe.
High stimulation outputs and charge density limits. Avoid excessive stimulation. A risk of brain tissue damage exists with parameter settings using high amplitudes and wide pulse widths. High amplitudes and wide pulse widths should only be programmed with due consideration of the warnings concerning charge densities.
The system can be programmed to use parameter settings outside the range of those used in the clinical studies. If the programming of stimulation parameters exceeds the charge density limit of 30 μC/cm2, a screen will appear warning you that the charge density is too high. Charge density can be reduced by lowering the stimulation amplitude or pulse width. For more information, see the clinician programmer manual.
Higher amplitudes and wider pulse widths may indicate a system problem or a suboptimal lead placement. Stimulation at high outputs may cause unpleasant sensations or motor disturbances or may render the patient incapable of controlling the patient controller. If unpleasant sensations occur, the device should be turned off immediately using the patient magnet.
Risk of depression, suicidal ideations, and suicide. New onset or worsening depression, which may be temporary or permanent, is a risk that has been reported with DBS therapy. Suicidal ideation, suicide attempts, and suicide are events that have also been reported. Therefore, physicians should consider the following:
Poor surgical risks. Neurostimulation should not be used on patients who are poor surgical risks or patients with multiple illnesses or active general infections.
Explosive or flammable gases. Do not use the clinician programmer or patient controller in an environment where explosive or flammable gas fumes or vapors are present. The operation of the clinician programmer or patient controller could cause them to ignite, causing severe burns, injury, or death.
Operation of machinery and equipment. Patients should not operate potentially dangerous machinery, power tools, or vehicles or engage in any activity that could be unsafe if their symptoms were to unexpectedly return.
Device components. The use of components not approved for use by Abbott Medical with this system may result in damage to the system and increased risk to the patient.
Electrosurgery. To avoid harming the patient or damaging the neurostimulation system, do not use monopolar electrosurgery devices on patients with implanted neurostimulation systems. Before using an electrosurgery device, place the device in Surgery Mode using the patient controller app or clinician programmer app. Confirm the neurostimulation system is functioning correctly after the procedure.
During implant procedures, if electrosurgery devices must be used, take the following actions:
Radiofrequency or microwave ablation. Careful consideration should be used before using radiofrequency (RF) or microwave ablation in patients who have an implanted neurostimulation system since safety has not been established. Induced electrical currents may cause heating, especially at the lead electrode site, resulting in tissue damage.
Implanted cardiac systems. Physicians need to be aware of the risk and possible interaction between a neurostimulation system and an implanted cardiac system, such as a pacemaker or defibrillator. Electrical pulses from a neurostimulation system may interact with the sensing operation of an implanted cardiac system, causing the cardiac system to respond inappropriately. To minimize or prevent the implanted cardiac system from sensing the output of the neurostimulation system,
Other active implanted devices. The neurostimulation system may interfere with the normal operation of another active implanted device, such as a pacemaker, defibrillator, or another type of neurostimulator. Conversely, the other active implanted device may interfere with the operation of the neurostimulation system.
Case damage. If the case of the implantable pulse generator (IPG) is pierced or ruptured, severe burns could result from exposure to battery chemicals.
Cremation. The IPG should be explanted before cremation because the IPG could explode. Return the explanted IPG to Abbott Medical.
Component disposal. Return all explanted components to Abbott Medical for safe disposal. IPGs contain batteries as well as other potentially hazardous materials. Do not crush, puncture, or burn the IPG because explosion or fire may result.
Coagulopathies. Physicians should use extreme care with lead implantation in patients with a heightened risk of intracranial hemorrhage. Physicians should also consider underlying factors, such as previous neurological injury or prescribed medications (anticoagulants), that may predispose a patient to the risk of bleeding.
Low frequencies. Stimulation frequencies at less than 30 Hz may cause tremor to be driven (meaning that tremor occurs at the same frequency as the programmed frequency). For this reason, programming at frequencies less than 30 Hz is not recommended.
IPG placement. The IPG should be placed into the pocket, at a depth not to exceed 4 cm (1.57 in), with the logo side facing toward the skin surface. Placing the IPG deeper than 4 cm (1.57 in) can impede or prohibit IPG communications with the clinician programmer or patient controller.
Return of symptoms and rebound effect. The abrupt cessation of stimulation for any reason will probably cause disease symptoms to return. In some cases, symptoms may return with a greater intensity than what a patient experienced before system implantation (rebound effect). In rare cases, this can create a medical emergency.
The following precautions apply to this neurostimulation system.
General Precautions
Surgeon training. Implanting physicians should be experienced in stereotactic and functional neurosurgery.
Clinician training. Clinicians should be familiar with deep brain stimulation therapy and be experienced in the diagnosis and treatment of the indication for which the deep brain stimulation components are being used.
Patient selection. Select patients appropriately for deep brain stimulation. The patient should be able and willing to use the patient controller and correctly interpret the icons and messages that appear on the screen.
Especially consider the following additional factors when selecting patients:
Infection. Follow proper infection control procedures. Infections may require that the device be explanted.
Electromagnetic interference (EMI). Some equipment in home, work, medical, and public environments can generate EMI that is strong enough to interfere with the operation of a neurostimulation system or damage system components. Patients should avoid getting too close to these types of EMI sources, which include the following examples: commercial electrical equipment (such as arc welders and induction furnaces), communication equipment (such as microwave transmitters and high-power amateur transmitters), high-voltage power lines, radiofrequency identification (RFID) devices, and some medical procedures (such as therapeutic radiation and electromagnetic lithotripsy).
Security, antitheft, and radiofrequency identification (RFID) devices. Some antitheft devices, such as those used at entrances or exits of department stores, libraries, and other public places, and airport security screening devices may affect stimulation. Additionally, RFID devices, which are often used to read identification badges, as well as some tag deactivation devices, such as those used at payment counters at stores and loan desks at libraries, may also affect stimulation.
Patients should cautiously approach such devices and should request help to bypass them. If they must go through or near a gate or doorway containing this type of device, patients should move quickly and then check their IPG to determine if it is turned on or off.
Unauthorized changes to stimulation parameters. Caution patients to not make unauthorized changes to physician-established stimulation parameters.
Damage to shallow implants. Falling and other traumatic accidents can damage shallowly implanted components such as the leads and extensions.
Keep programmers and controllers dry. The clinician programmer and patient controller are not waterproof. Keep them dry to avoid damage. Advise patients to not use the patient controller when engaging in activities that might cause it to get wet, such as swimming or bathing.
Handle the programmers and controllers with care. The clinician programmer and patient controllers are sensitive electronic devices that can be damaged by rough handling, such as dropping them on the ground.
Battery care. Batteries can explode, leak, or melt if disassembled, shorted (when battery connections contact metal), or exposed to high temperature or fire.
Long-term safety and effectiveness. The long-term safety and effectiveness of this neurostimulation system has not been established beyond 5 years. Safety and effectiveness has not been established for patients with a neurological disease other than Parkinson’s disease or essential tremor, previous surgical ablation procedures, dementia, coagulopathies, or moderate to severe depression; patients under 22 years; implantation in targets other than the STN for Parkinson's disease and the VIM for essential tremor; patients with an active implantable device; patients requiring MRI.
Sterilization and Storage
Single-use, sterile device. The implanted components of this neurostimulation system are intended for a single use only. Sterile components in this kit have been sterilized using ethylene oxide (EtO) gas before shipment and are supplied in sterile packaging to permit direct introduction into the sterile field. Do not resterilize or reimplant an explanted system for any reason.
Storage environment. Store components and their packaging where they will not come in contact with liquids of any kind. Detailed information on storage environment is provided in the appendix of this manual.
Handling and Implantation
Expiration date. An expiration date (or “use-before” date) is printed on the packaging. Do not use the system if the use-before date has expired.
Care and handling of components. Use extreme care when handling system components. Excessive heat, excessive traction, excessive bending, excessive twisting, or the use of sharp instruments may damage and cause failure of the components.
Package or component damage. Do not implant a device if the sterile package or components show signs of damage, if the sterile seal is ruptured, or if contamination is suspected for any reason. Return any suspect components to Abbott Medical for evaluation.
Exposure to body fluids or saline. Prior to connection, exposure of the metal contacts, such as those on the connection end of a lead or extension, to body fluids or saline can lead to corrosion. If such exposure occurs, clean the affected parts with sterile, deionized water or sterile water for irrigation, and dry them completely prior to lead connection and implantation.
Skin erosion. To avoid the risk of skin erosion, implant components at the appropriate depth and inform patients to avoid touching their skin where components are implanted. The IPG should be placed into the pocket, at a depth not to exceed 4.0 cm (1.57 in), with the logo side facing toward the skin surface.
System testing. To ensure correct operation, always test the system during the implant procedure, before closing the neurostimulator pocket, and before the patient leaves the surgery suite.
Device modification. The equipment is not serviceable by the customer. To prevent injury or damage to the system, do not modify the equipment. If needed, return the equipment to Abbott Medical for service.
Multiple leads. When multiple leads are implanted, route the lead extensions so the area between them is minimized. If the lead extensions are routed in a loop, the loop will increase the potential for electromagnetic interference (EMI).
Abandoned leads and replacement leads. The long-term safety associated with multiple implants, leads left in place without use, replacement of leads, multiple implants into the target structure, and lead explant is unknown.
Placement of lead connection in neck. The lead-extension connector should not be placed in the soft tissues of the neck due to an increased incidence of lead fracture.
Hospital and Medical Environments
Electrical medical treatment. In the case that a medical treatment is administered where an electrical current is passed through the body from an external source, first deactivate the IPG by setting all electrodes to off, turning stimulation off, and setting amplitude to zero. Regardless if the device is deactivated, take care to monitor the device for proper function during and after treatment.
High-output ultrasonics and lithotripsy. The use of high-output devices, such as an electrohydraulic lithotriptor, may cause damage to the electronic circuitry of an implanted IPG. If lithotripsy must be used, do not focus the energy near the IPG.
Ultrasonic scanning equipment. The use of ultrasonic scanning equipment may cause mechanical damage to an implanted neurostimulation system if used directly over the implanted system.
External defibrillators. The safety of discharge of an external defibrillator on patients with implanted neurostimulation systems has not been established.
Therapeutic radiation. Therapeutic radiation may damage the electronic circuitry of an implanted neurostimulation system, although no testing has been done and no definite information on radiation effects is available. Sources of therapeutic radiation include therapeutic X rays, cobalt machines, and linear accelerators. If radiation therapy is required, the area over the implanted IPG should be shielded with lead. Damage to the system may not be immediately detectable.
Electrocardiograms. Ensure the neurostimulator is off before initiating an electrocardiogram (ECG). If the neurostimulator is on during an ECG, the ECG recording may be adversely affected, resulting in inaccurate ECG results. Inaccurate ECG results may lead to inappropriate treatment of the patient.
Home and Occupational Environments
Patient activities and environmental precautions. Patients should take reasonable care to avoid devices that generate strong EMI, which may cause the neurostimulation system to unintentionally turn on or off. Patients should also avoid any activities that would be potentially unsafe if their symptoms were to return unexpectedly. These activities include but are not limited to climbing ladders and operating potentially dangerous machinery, power tools, and vehicles. Sudden loss of stimulation may cause patients to fall or lose control of equipment or vehicles, injure others, or bring injury upon themselves.
Control of the patient controller. Advise patients to keep the patient controller away from children and pets in order to avoid potential damage or other hazards.
Activities requiring excessive twisting or stretching. Patients should avoid activities that may put undue stress on the implanted components of the neurostimulation system. Activities that include sudden, excessive or repetitive bending, twisting, or stretching can cause component fracture or dislodgement. Component fracture or dislodgement may result in loss of stimulation, intermittent stimulation, stimulation at the fracture site, and additional surgery to replace or reposition the component.
Activities requiring coordination. Loss of coordination is a potential side effect of DBS therapy. Patients should exercise reasonable caution when participating in activities that require coordination, including those that they were able to perform prior to receiving DBS therapy (for example, swimming).
Bathing. Patients should exercise reasonable caution when bathing.
Component manipulation by patient. Advise your patient to avoid manipulating the implanted system components (e.g., the neurostimulator, the burr hole site). This can result in component damage, lead dislodgement, skin erosion, or stimulation at the implant site. Manipulation may cause device inversion, inhibiting the ability to use the magnet to start or stop stimulation.
Scuba diving or hyperbaric chambers. Patients should not dive below 30 m (100 ft) of water or enter hyperbaric chambers above 4.0 atmospheres absolute (ATA). Pressures below 30 m (100 ft) of water (or above 4.0 ATA) could damage the neurostimulation system. Before diving or using a hyperbaric chamber, patients should discuss the effects of high pressure with their physician.
Skydiving, skiing, or hiking in the mountains. High altitudes should not affect the neurostimulator; however, the patient should consider the movements involved in any planned activity and take precautions to avoid putting undue stress on the implanted system. Patients should be aware that during skydiving, the sudden jerking that occurs when the parachute opens may cause lead dislodgement or fractures, which may require surgery to repair or replace the lead.
Wireless use restrictions. In some environments, the use of wireless functions (e.g., Bluetooth® wireless technology) may be restricted. Such restrictions may apply aboard airplanes, near explosives, or in hazardous locations. If you are unsure of the policy that applies to the use of this device, please ask for authorization to use it before turning it on. (Bluetooth® is a registered trademark of Bluetooth SIG, Inc.)
Mobile phones. The effect of mobile phones on deep brain stimulation is unknown. Patients should be advised to avoid carrying mobile phones in their shirt pocket or otherwise placing them directly over the deep brain stimulation system components. If interference occurs, try holding the phone to the other ear or turning off the phone.
Household appliances. Household appliances that contain magnets (e.g., refrigerators, freezers, inductive cooktops, stereo speakers, mobile telephones, cordless telephones, standard wired telephones, AM/FM radios, and some power tools) may unintentionally cause the neurostimulation system to turn on or turn off.
Therapeutic magnets. Patients should be advised to not use therapeutic magnets. Therapeutic magnets (e.g., magnets used in pillows, mattress pads, back belts, knee braces, wrist bands, and insoles) may unintentionally cause the neurostimulation system to turn on or off.
Deep brain stimulation potentially has the following adverse effects:
Possible surgical complications. Surgical complications include, but are not limited to, the following:
Possible deep brain stimulation complications. Deep brain stimulation complications include, but are not limited to, the following:
MAT-2300540 v1.0 | Item approved for EMEA use only.
Read this section to gather important prescription and safety information.
This neurostimulation system is designed to deliver low-intensity electrical impulses to nerve structures. The system is intended to be used with leads and associated extensions that are compatible with the system.
This neurostimulation system is indicated as an aid in the management of chronic, intractable pain of the trunk and/or limbs, including unilateral or bilateral pain associated with the following: failed back surgery syndrome and intractable low back and leg pain.
This system is contraindicated for patients who are unable to operate the system or who have failed to receive effective pain relief during trial stimulation.
Some models of this system are Magnetic Resonance (MR) Conditional, and patients with these devices may be scanned safely with magnetic resonance imaging (MRI) when the conditions for safe scanning are met. For more information about MR Conditional neurostimulation components and systems, including equipment settings, scanning procedures, and a complete listing of conditionally approved components, refer to the MRI procedures clinician's manual for neurostimulation systems (available online at medical.abbott/manuals).
The following warnings apply to this neurostimulation system.
Poor surgical risks. Neurostimulation should not be used on patients who are poor surgical risks or patients with multiple illnesses or active general infections.
Magnetic resonance imaging (MRI). Some patients may be implanted with the components that make up a Magnetic Resonance (MR) Conditional system, which allows them to receive an MRI scan if all the requirements for the implanted components and for scanning are met. A physician can help determine if a patient is eligible to receive an MRI scan by following the requirements provided by Abbott Medical. Physicians should also discuss any risks of MRI with patients.
Patients without an MR Conditional neurostimulation system should not be subjected to MRI because the electromagnetic field generated by an MRI may damage the device electronics and induce voltage through the lead that could jolt or shock the patient.
Diathermy therapy. Do not use short-wave diathermy, microwave diathermy, or therapeutic ultrasound diathermy (all now referred to as diathermy) on patients implanted with a neurostimulation system. Energy from diathermy can be transferred through the implanted system and cause tissue damage at the location of the implanted electrodes, resulting in severe injury or death.
Diathermy is further prohibited because it may also damage the neurostimulation system components. This damage could result in loss of therapy, requiring additional surgery for system implantation and replacement. Injury or damage can occur during diathermy treatment whether the neurostimulation system is turned on or off.
Electrosurgery. To avoid harming the patient or damaging the neurostimulation system, do not use monopolar electrosurgery devices on patients with implanted neurostimulation systems. Before using an electrosurgery device, place the device in Surgery Mode using the patient controller app or clinician programmer app. Confirm the neurostimulation system is functioning correctly after the procedure.
During implant procedures, if electrosurgery devices must be used, take the following actions:
Implanted cardiac systems. Physicians need to be aware of the risk and possible interaction between a neurostimulation system and an implanted cardiac system, such as a pacemaker or defibrillator. Electrical pulses from a neurostimulation system may interact with the sensing operation of an implanted cardiac system, causing the cardiac system to respond inappropriately. To minimize or prevent the implanted cardiac system from sensing the output of the neurostimulation system,
Other active implanted devices. The neurostimulation system may interfere with the normal operation of another active implanted device, such as a pacemaker, defibrillator, or another type of neurostimulator. Conversely, the other active implanted device may interfere with the operation of the neurostimulation system.
Interference with other devices. Some of this system’s electronic equipment, such as the programmer and controller, can radiate radiofrequency (RF) energy that may interfere with other electronic devices, including other active implanted devices. Avoid placing equipment components directly over other electronic devices. To correct the effect of interference with other devices, turn off the equipment or increase the distance between the equipment and the device being affected.
Operation of machines, equipment, and vehicles. Patients using therapy that generates paresthesia should turn off stimulation before operating motorized vehicles, such as automobiles, or potentially dangerous machinery and equipment because sudden stimulation changes may distract them from properly operating it. However, current data shows that most patients using BurstDR™ stimulation therapy do not experience paresthesia. For patients who do not feel paresthesia, sudden stimulation changes are less likely to occur and distract them while operating motorized vehicles, machinery, or equipment.
Explosive and flammable gases. Do not use a clinician programmer or patient controller in an environment where explosive or flammable gas fumes or vapors are present. The operation of these devices could cause them to ignite, causing severe burns, injury, or death.
Keep the device dry. Programmer and controller devices are not waterproof. Keep them dry to avoid damage. Advise patients to not use their device when engaging in activities that might cause it to get wet, such as swimming or bathing.
Pediatric use. Safety and effectiveness of neurostimulation for pediatric use have not been established.
Pregnancy and nursing. Safety and effectiveness of neurostimulation for use during pregnancy and nursing have not been established.
Device components. The use of components not approved for use by Abbott Medical with this system may result in damage to the system and increased risk to the patient.
Device modification. Equipment is not serviceable by the customer. To prevent injury or damage to the system, do not modify the equipment. If needed, return the equipment to Abbott Medical for service
Application modification. To prevent unintended stimulation, do not modify the operating system in any way. Do not use the application if the operating system is compromised (i.e., jailbroken).
Case damage. Do not handle the IPG if the case is pierced or ruptured because severe burns could result from exposure to battery chemicals.
IPG disposal. Return all explanted IPGs to Abbott Medical for safe disposal. IPGs contain batteries as well as other potentially hazardous materials. Do not crush, puncture, or burn the IPG because explosion or fire may result.
Product materials. Neurostimulation systems have materials that come in contact or may come in contact with tissue. A physician should determine whether or not a patient may have an allergic reaction to these materials before the system is implanted.
The following precautions apply to this neurostimulation system.
General Precautions
Sterilization and Storage
Handling and Implementation
Hospitals and Medical Environments
Home and Occupational Environments
In addition to those risks commonly associated with surgery, the following risks are associated with implanting or using this IPG:
MAT-2300508 v1.0 | Item approved for EMEA use only.
Read this section to gather important prescription and safety information. For specific indications, contraindications, instructions, warnings, precautions, and adverse effects about system components available in your country or region, see the approved clinician's manual for those components.
This neurostimulation system is designed to deliver low-intensity electrical impulses to nerve structures. The system is intended to be used with leads and associated extensions that are compatible with the system.
This neurostimulation system is indicated for the management of chronic, intractable pain.
This neurostimulation system is contraindicated for patients who are
Patients who failed to receive effective pain relief during trial stimulation are contraindicated to process to the permanent implant procedure.
Some models of this system are Magnetic Resonance (MR) Conditional, and patients with these devices may be scanned safely with magnetic resonance imaging (MRI) when the conditions for safe scanning are met. For more information about MR Conditional neurostimulation components and systems, including equipment settings, scanning procedures, and a complete listing of conditionally approved components, refer to the MRI procedures clinician's manual for neurostimulation systems (available online at medical.abbott/manuals).
The following warnings apply to this neurostimulation system.
Clinician training. Implanting physicians should be experienced in the diagnosis and treatment of chronic pain syndromes and have undergone surgical and device implantation training for dorsal root ganglion (DRG) neurostimulation systems.
Pregnancy and nursing. Safety and effectiveness of neurostimulation for use during pregnancy and nursing have not been established.
Pediatric use. The safety and effectiveness of neurostimulation for pediatric use have not been established.
External defibrillators. Safety for use of external defibrillator discharges on a patient receiving neurostimulation has not been established. External defibrillation can cause induced currents in the lead-extension portion of the neurostimulation system. After defibrillation, confirm the neurostimulation system is still working.
Magnetic resonance imaging (MRI). Some patients may be implanted with the components that make up a Magnetic Resonance (MR) Conditional system, which allows them to receive an MRI scan if all the requirements for the implanted components and for scanning are met. A physician can help determine if a patient is eligible to receive an MRI scan by following the requirements provided by Abbott Medical. Physicians should also discuss any risks of MRI with patients.
Patients without an MR Conditional neurostimulation system should not be subjected to MRI because the electromagnetic field generated by an MRI may damage the device electronics, cause heating at the lead tip that could result in tissue damage, and induce voltage through the lead that could jolt or shock the patient.
Computed tomography (CT). If the patient requires a CT scan, all stimulation should be turned off before the procedure. If stimulation is not turned off, the patient may experience a momentary increase in stimulation, which may be uncomfortable. Before beginning a CT scan, the operator should use CT scout views to determine if implanted or externally worn electronic medical devices are present and if so, their location relative to the programmed scan range.
Important note: For CT procedures that require scanning over the medical device continuously for more than a few seconds, as with CT perfusion or interventional exams, attending staff should be ready to take emergency measures to treat adverse reactions if they occur.
After CT scanning directly over the implanted or externally worn electronic medical device:
Diathermy therapy. Do not use short-wave diathermy, microwave diathermy, or therapeutic ultrasound diathermy (all now referred to as diathermy) on patients implanted with a neurostimulation system. Energy from diathermy can be transferred through the implanted system and cause tissue damage at the location of the implanted electrodes, resulting in severe injury or death.
Diathermy is further prohibited because it may also damage the neurostimulation system components. This damage could result in loss of therapy, requiring additional surgery for system implantation and replacement. Injury or damage can occur during diathermy treatment whether the neurostimulation system is turned on or off. Advise patients to inform their healthcare professional that they should not be exposed to diathermy treatment.
Electrosurgery. To avoid harming the patient or damaging the neurostimulation system, do not use monopolar electrosurgery devices on patients with implanted neurostimulation systems. Before using an electrosurgery device, place the device in Surgery Mode using the patient controller app or clinician programmer app. Confirm the neurostimulation system is functioning correctly after the procedure.
During implant procedures, if electrosurgery devices must be used, take the following actions:
Implanted cardiac systems. Physicians need to be aware of the risk and possible interaction between a neurostimulation system and an implanted cardiac system, such as a pacemaker or defibrillator. Electrical pulses from a neurostimulation system may interact with the sensing operation of an implanted cardiac system, causing the cardiac system to respond inappropriately. To minimize or prevent the implanted cardiac system from sensing the output of the neurostimulation system,
Other active implantable devices. The effect of other implanted devices, including deep brain stimulators, peripheral nerve stimulators, implanted drug delivery pumps, and cochlear implants on the neurostimulation system are unknown.
Radiofrequency or microwave ablation. Safety has not been established for radiofrequency (RF) or microwave ablation in patients who have an implanted neurostimulation system. Induced electrical currents may cause heating, especially at the lead electrode site, resulting in tissue damage.
Emergency procedures. Instruct patients to designate a representative (family member or close friend) to notify any emergency medical personnel of their implanted neurostimulation system if emergency care is required. Patients will receive an identification card to carry with them that will inform emergency medical personnel of their implanted system. Advise patients to use caution when undergoing any procedure that could include radiofrequency (RF) or microwave ablation, defibrillation, or cardioversion.
Ultrasonic scanning equipment. The use of ultrasonic scanning equipment may cause mechanical damage to an implanted neurostimulation system if used directly over the implanted system.
Therapeutic radiation. Therapeutic radiation may damage the electronic circuitry of an implanted neurostimulation system, although no testing has been done and no definite information on radiation effects is available. Sources of therapeutic radiation include therapeutic X rays, cobalt machines, and linear accelerators. If radiation therapy is required, the area over the implanted IPG should be shielded with lead. Damage to the system may not be immediately detectable.
Restricted areas. Warn patients to seek medical guidance before entering environments that could adversely affect the operation of the implanted device, including areas protected by a warning notice preventing entry by patients fitted with a pacemaker.
Component manipulation by patients. The patient must be instructed to not rub or exert pressure on implanted components through the skin as this may cause lead dislodgement leading to stimulation at the implant site, IPG inversion leading to the inability to communicate with the device, or skin erosion that can lead to another surgical procedure or possible infection.
Implantation at vertebral levels above T10. The safety and efficacy of implantation of leads implanted above the T10 vertebral level have not been evaluated.
Number of leads implanted. The safety and efficacy of the implantation of greater than four leads have not been evaluated.
Lead movement. Patients should be instructed to avoid bending, twisting, stretching, and lifting objects over 2 kg (5 lb) for at least six weeks after implantation. These activities may cause lead movement, resulting in under stimulation or overstimulation for the patient. Excessive lead migration may require reoperation to replace the leads.
Scuba diving and hyperbaric chambers. Instruct patients to avoid scuba diving and entering hyperbaric chambers above 1.5 atmospheres absolute (ATA) because these activities might damage the neurostimulation system.
Operation of machines, equipment, and vehicles. In the clinical experience with this device, patients have experienced few effects when moving from lying down to sitting up. Therefore, it is unlikely patients will need to adjust stimulation when changing positions or moving. However, advise patients who feel uncomfortable paresthesia during postural changes that they should not operate potentially dangerous equipment such as power tools, automobiles, or other motor vehicles.
These patients should not climb ladders or participate in activities where postural changes or abrupt movements could alter the perception of stimulation intensity and cause patients to fall or lose control of equipment or vehicles or injure others.
Explosive and flammable gases. Do not use a clinician programmer or patient controller in an environment where explosive or flammable gas fumes or vapors are present. The operation of these devices could cause them to ignite, causing severe burns, injury, or death.
Keep the device dry. Programmer and controller devices are not waterproof. Keep them dry to avoid damage. Advise patients to not use their device when engaging in activities that might cause it to get wet, such as swimming or bathing.
Device components. The use of components not approved for use by Abbott Medical with this system may result in damage to the system and increased risk to the patient.
Device modification. The equipment is not serviceable by the customer. To prevent injury or damage to the system, do not modify the equipment. If needed, return the equipment to Abbott Medical for service.
Application modification. To prevent unintended stimulation, do not modify the operating system in any way. Do not use the application if the operating system is compromised (i.e., jailbroken).
Case damage. Do not handle the IPG if the case is pierced or ruptured because severe burns could result from exposure to battery chemicals.
Cremation. The IPG should be explanted before cremation because the IPG could explode. Return the explanted IPG to Abbott Medical.
IPG disposal. Return all explanted IPGs to Abbott Medical for safe disposal. IPGs contain batteries as well as other potentially hazardous materials. Do not crush, puncture, or burn the IPG because explosion or fire may result.
Product materials. Neurostimulation systems have materials that come in contact or may come in contact with tissue. A physician should determine whether or not a patient may have an allergic reaction to these materials before the system is implanted.
Conscious sedation. The placement of the leads involves some risk, as with any surgical procedure. Conscious sedation can cause side effects such as systemic toxicity, or cardiovascular or pulmonary problems. Use caution when sedating the patient. The patient must be awake and conversant during the procedure to minimize the likelihood of nerve damage.
Preventing infection. Always remove the trial leads before implanting the implant leads to avoid the risk of infection that may cause death if the leads are not removed. Use appropriate sterile technique when implanting leads and the IPG.
Lead damage from tools. Use extreme care when using sharp instruments or electrosurgery devices around the lead to avoid damaging the lead.
Needle positioning. Always be aware of the needle tip position. Use caution when positioning the needle to avoid unintended injury to surrounding anatomical structures.
Needle insertion. When using a contralateral approach, advance the needle slowly into the epidural space and take caution as it enters. The needle will be inserted at a steeper angle than in an antegrade approach and there is a greater chance of dural puncture that will lead to a cerebrospinal fluid leak.
Advancing components. Use fluoroscopy and extreme care when inserting, advancing, or manipulating the guidewire or lead in the epidural space to minimize the risk of a dural tear. Dural puncture can occur if needle or guidewire is advanced aggressively once loss of resistance is achieved. Advance the needle and guidewire slowly. Do not use excessive force to push the lead or sheath into the neural foramen as this may result in permanent or transient nerve damage.
Removing components. Use extreme care when removing the lead stylet, the delivery sheath, and the needle to ensure that the distal tip of the lead remains in the desired location. Removing each item in slow movements while holding the remaining components in place will assist this process.
Sheath insertion warning. Insertion of a sheath without the lead may result in dural puncture. Securing the lead with the lead stabilizer will mitigate this risk.
Sheath retraction. If the sheath needs to be retracted from the epidural space, verify that the steering wing is rotated away from the needle mark no more than 90 degrees. Failure to do so may result in damage to the sheath. Before reinserting the sheath, verify there is no damage to the sheath.
Sheath rotation. If the sheath is not responding to rotation, do not rotate the steering wing out of plane from the curve of the sheath more than 90 degrees. The tip of the sheath may whip around and could cause harm to the patient.
Lead insertion through sheath. If the lead is unable to deploy out of the sheath, inject sterile water or saline slowly to release tissue that may have entered between the sheath and the lead. Do not use excessive pressure when injecting through the sheath.
Removing a kinked sheath. If the sheath has been kinked during delivery, slowly retract through the needle with the curve facing the same direction as the bevel. Failure to do so can damage or cut the lead or sheath. If resistance is encountered, pull the needle out of the epidural space and then remove the sheath.
Providing strain relief. Failure to provide strain relief may result in lead migration requiring a revision procedure.
Anchoring leads. Do not suture directly onto the lead to avoid damaging the lead. Failure to appropriately anchor the lead may cause lead migration, motor activation, or painful stimulation.
Remove leads slowly. Remove leads slowly (at a suggested rate of 1 cm/s while holding the lead between the thumb and forefinger) to avoid breaking the lead and leaving fragments in the patient. If resistance is met while removing leads from the epidural space, do not use excessive force to extract. Always perform removal with the patient conscious and able to give feedback.
The following precautions apply to this neurostimulation system.
General Precautions
Sterilization and Storage
Handling and Implementation
Hospital and Medical Environments
Home and Occupational Environments
In addition to those risks commonly associated with surgery, the following risks are associated with using this neurostimulation system:
Additional risks to the patients, as a result of the placement and stimulation of the lead in the area of the dorsal root ganglion (DRG), include pain from setting the stimulation parameters too high. This may occur once the lead is in place and is connected to the neurostimulator and activated. The neurostimulator is controlled by a trained operator and the starting point for the stimulation will be set to the lowest available settings. Additionally, all patients will be awake and conversant during the procedure to minimize the impact.
MAT-2300507 v1.0 | Item approved for EMEA use only.
23-76511 MAT-2303639 v1.0 | Item approved for EMEA use only.
Links which take you out of Abbott worldwide websites are not under the control of Abbott, and Abbott is not responsible for the contents of any such site or any further links from such site. Abbott is providing these links to you only as a convenience, and the inclusion of any link does not imply endorsement of the linked site by Abbott.
The website that you have requested also may not be optimized for your screen size.
75581 MAT-2302646 v1.0 | Item approved for EMEA use only.
Please be aware that the website you have requested is intended for the residents of a particular country or countries, as noted on that site. As a result, the site may contain information on pharmaceuticals, medical devices and other products or uses of those products that are not approved in other countries or regions.
75578 MAT-2302644 v1.0 | Item approved for EMEA use only.
Chronic Pain